IEICE Trans. on Information and Systems, Vol. E78-D, No. 6, pp, 705-711, 1995
Automatic language identification using sequential information of phonemes
T. Arai
Abstract: In this paper approaches to language identification based on the sequential iformation of phonemes are described. Thse approaches assume that each language can be identified from its own phoneme structure, or phonotactics. To extract this phoneme structure, we use phoneme classifiers and grammars for each language. The phoneme classifiers for each language is implemented as a multi-layer perceptron trained on quasi-phonetic hand-labeled transcriptions. After training the phoneme classifiers, the grammars for each language are calculatted as a set of transition probabilities for each phoneme pair. Because of the interest in automatic language identification for wordwide voice communication, we decided to use telephone speech for this study. The data for this study were drawn from the OGI (Oregon Graduate Institute)-TS(telephone speech) corpus, a standard corpus for this type of research. To investigate the basic issues of this approach, two languages, Japanese and English, were selected. The language classification algorithms are based on Viterbi search constrained by a bigram grammar and by minimum and maximum durations. Using a phoneme classifier trained only on English phonemes, we achieved 81.1% accuracy. We achieved 79.3% accuracy using a phoneme classifier trained on Japanese phonemes. Using both the English and the Japanese phoneme classifiers together, we obtained our best result; 83.3%. Our results were comparable to those obtained by other methods such as that based on the hidden Markov model.
Keywords: language identification, phonetic transcription, telephone speech, multi-layer perceptron, bigram